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Elementary derivative tasks and neural net multiscale analysis of tasks
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Formal neurons implementing wavelets have been shown to build nets that are able to approximate any
multidimensional task. In this paper, we use a finite number of formal neurons implementing elementary tasks
such as ‘‘sombrero’’ responses or even simpler ‘‘window’’ responses, with adjustable widths. We show this to
provide a reasonably efficient, practical and robust, multifrequency analysis of tasks. The translation degree of
freedom of wavelets is shown to be unnecessary. A training algorithm, optimizing the output task with respect
to the widths of the responses, reveals two distinct training modes. The first mode keeps the formal neurons
distinct. The other mode induces some of the formal neurons to become identical, with output weights of equal
strengths but opposite signs. Hence this latter mode promotes tasks that are derivatives of the elementary tasks
with respect to the width parameter. Such results, obtained from optimizations with respect to a width param-
eter, can be generalized for any other parameters of the elementary tasks.
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I. INTRODUCTION

The ability of neural nets to be universal approximato
has been proved by Refs.@1,2# and studied by further author
in different contexts. For instance, neurons or small neuro
groups implementing ‘‘plane wave responses’’ have be
considered by Refs.@3# and Ref.@4#. Also, pairs of neurons
implementing ‘‘window responses’’ have been investiga
by Refs.@5#. Any complete enough basis of functions, that
able to span a sufficiently large vector space of respo
functions, is of interest. For instance, the wavelet analy
has been the subject of a complete investigation by Refs@6#
and @7#.

In this paper, we visit again the subject of a linear exp
sion of tasks in wavelets, but with an emphasis upon negl
ing the usual ‘‘translational’’ parameters. We mainly use
scale parameter only. This is somewhat different from
usual wavelet approach, which takes advantage of both tr
lation and scale. But we shall find that a multifrequency
construction of tasks occurs as well.

For the sake of robustness and biological relevance,
introduce a significant amount of randomness, corrected
training, in the initial choice of the implemented neuron
parameters. Furthermore, our basic neuronal units are
necessarily strictly related to wavelets. They can be th
‘‘window response’’ pairs advocated earlier@5#, because of
biological relevance too. Such deviations from the more r
orous approaches of Refs.@6# and @7# are expected to mak
cheaper the practical implementation of such neural n
They turn out to give similar results, namely, the multifr
quency analysis works as well with windowlike, sombrer
like or any more general elementary response.

We investigate two training operations. The first one co
sists of an easy optimization of the output synaptic la
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connecting a layer of intermediate, ‘‘elementary task ne
rons’’ to an output, purelylinear neuron. The second trainin
consists of optimizing the scale parameters of such a laye
intermediate neurons. It will be found that one may st
from random values of such parameters and, however, so
times reach solutions where some among the intermed
neurons are driven to become identical. This ‘‘dynamic
identification’’ training will be discussed.

For the generic case of multidimensional inputs, we se
rate a ‘‘radial’’ from an ‘‘angular’’ analysis of the task. Thi
technical manipulation does not change our results.

In Sec. II, we describe our formalism, including a trad
tional universality theorem. We also reduce the realis
multidimensional situations to a one-dimensional proble
In Sec. III we illustrate such considerations by numeric
examples of network training. Section IV contains a few co
siderations for the generalization of the results obtained w
the wavelet model and similar models. Finally Sec. V co
tains our discussion and conclusion.

II. FORMALISM

A. Definitions, architecture

Consider an inputX.0 that must be processed into a
output~a task! F(X). This input is taken here to be a positiv
number, such as the intensity of a spike or the average in
sity ~or frequency! of a spike train. One may viewX as a
‘‘radial’’ coordinate in a suitable space. There is no loss
generality in restrictingX to be a positive number, becaus
should negative values ofX be necessary for the argumen
then F could always be split into even and odd par
@F(X)6F(2X)#/2, respectively. Such even and odd pa
need only be known forX.0, obviously. Outputs, in turn
will have both signs, in order to account for both excitati
or inhibition. Finally there is no need to tell a scalar ta
F(X) from a vector task$F1(X),F2(X), . . . %, since any
©2001 The American Physical Society09-1
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FIG. 1. All elementary units~FN’s! receive
the same inputX. Each unit returns an outputf,
which depends on parameters such as a thresh
b and a scalel. Output synaptic weightsw(b,l)
linearly mix such elementary outputsf bl(X)
[ f (X;b,l) into a global outputF(X).
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componentFk(X) boils down to a separate scalar task, a
this can be processed by a parallel architecture.

Consider now neuronal units which, for instance, may
excitatory-inhibitory pairs of neurons providing a window
like elementary response. Or they may be more complica
assemblies of neurons, providing a more elaborate ‘‘mot
wavelet,’’ such as a ‘‘sombrero.’’ We denotef (X) the re-
sponse function of such a unit and, for short, call this un
‘‘formal neuron’’ ~FN!. The traditional wavelet approac
uses a set of such FN’s with various thresholdsb and scale
sensitivities l, hence a space of elementary respon
f bl(X)[ f @(X2b)/l#. The same approach expandsF in this
set,

F~X!5E db dl w~b,l! f @~X2b!/l!], ~1!

where the integral is most often reduced to a discrete s
Also, b andl do not need to be independent parameters.
expansion coefficients,w(b,l), are output synaptic weight
and are the unknowns of the problem. This well-known
chitecture is shown in Fig. 1.

B. One-dimensional universality, radial case

The following, seemingly poorer, but simpler expansio

F~X!5E
0

`

dlw~l!l21f ~X/l! ~2!

does not use the translation parameterb. Here it is assumed
that there exists a suitable electronic or biological tun
mechanism, able to recruit or adjust FN’s with suitable ga
l21, but no threshold tuning. Such gains are positive nu
bers, naturally. The outputs of such FN’s are then added,
synaptic output efficienciesw(l), which can be both posi
tive and negative, namely excitatory and inhibitory, resp
tively. The coefficientl21 is introduced in Eq.~2! for con-
venience only. It can be absorbed inw(l).

This expansion, Eq.~2! allows a universality theorem
DefineY5 ln X andL5 ln l. The same expansion become

G~Y![F~eY!5E
2`

`

dL W~L !g~Y2L !, ~3!
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where W(L)[w(eL) and g(Y)[ f (eY). This reduces the
‘‘scale expansion,’’ Eq.~2!, into a ‘‘translational expansion’
where a basis is generated by arbitrary translations of a g
function. The solution of this inverse convolution problem
trivially known asŴ(p)5Ĝ(p)/ĝ(p), where the superscrip
ˆ refers to the Fourier transforms ofW, G, andg, respec-
tively, and p is the relevant ‘‘momentum.’’ This result will
make our claim for universality. In the following, this pap
empirically assumes that the needed analytical propertie
f , f̂ , . . .Ŵ are satisfied. Actually, for the sake of biologic
or industrial relevance, we are only concerned with discr
zations of Eq.~2!, with N units,

Fapp~X!5(
i 51

N

w~l i ! f ~X/l i !, ~4!

where we now letw include the coefficientl i
21 dl. Also, in

an obvious short notation, we will usewi[w(l i).

C. Rotational analysis

Obviously, input patterns to be processed by a net can
be reduced to one degree of freedomX only. Rather, they
consist of a vector XW with many components
X1 ,X2 , . . . ,XP . These may be considered as, and reco

into, a radial variableX5A( j 51
P Xj

2 and, to specify a direc-
tion on the suitable hypersphere, (P21) angles
a1 ,a2 , . . . ,aP21. Enough special functions~Legendre
polynomials, spherical harmonics, and rotation matric
etc.! are available to generate complete functional base
angular space and one might invoke some formal neuron
implementing such base angular functions. The design
such FN’s, and as well the design of such a polar coordin
recoding, is a little far fetched, though. In this paper, w
prefer to take advantage of the following argument, ba
upon the synaptic weights of the input layer, shown in Fig

In the left part of the figure, Fig. 2, all the FN’s have th
same input synaptic weightsuW [$u1 ,u2 , . . . ,uP%, hence re-
ceive the same inputX5uW •XW when contributing to a globa
taskF. For the right part of Fig. 2, it is again assumed that
FN’s have equal input weights, with, however, weightsuW 8

deduced fromuW by a sheer rotation,uW 85RuW . Accordingly, if
the output weights of the left part are the same as those o
9-2
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FIG. 2. Architecture showing how a task ca
be rotated by means of the input synap
weights.
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right one, the global taskF(uW 8•XW ) performed by the right
part is a rotated task,F85RF. An expansion of any taskF
upon the (P21) rotation group is thus available,

F5E dR W~R! RF, ~5!

where discretizations are in order, naturally, with suita
output weightsW. Here F plays the role of an elementar
task, and it might be of some interest to study cases wheF
belongs to specific representations of the rotation group. T
broad subject exceeds the scope of the present paper,
ever, and, in the following, except in Sec. IV, we main
restrict our considerations to scalar tasksF(X) of a scalar
input X according to Fig. 1 only.

D. Training output weights

Let us return to Eq.~4!, in an obvious, short notation
Fapp5( iwi f i . Two kinds of parameters can be used to b
reconstructF: the output synaptic weightswi and, hidden
inside the elementary tasksf i , the scalesl i . Let ^u& denote
a suitable scalar product in the functional space spanne
all the f i ’s of interest. We assume, naturally, that the sa
scalar product makes sense for theF ’s. Incidentally, there is
no loss of generality ifF is normalized,̂ FuF&51, since the
final neuron is linear.

One way to define the ‘‘best’’Fapp is to minimize the
square norm of the error (F2Fapp). In terms of thewi ’s, this
consists in solving the equations,

]

]wi
S ^FuF&22(

j 51

N

wj^ f j uF&1 (
j ,k51

N

wj^ f j u f k&wkD 50,

i51, . . . ,N. ~6!

Let G be that matrix with elementsGjk5^ f j u f k&. Its inverse
G 21 usually exists. Even in those rare cases whenG is very
ill conditioned, or its rank is lower thanN, it is easy to define
a pseudoinverse such that, in all cases, the operatoP
01610
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5( i , j 51
N u f i&(G 21) i j ^ f j u is the projector upon the subspac

spanned by thef i ’s. Then an easy solution,Fapp5PF, is
found for Eqs.~6!,

wi5(
j 51

N

~G 21! i j ^ f j uF&, i 51, . . . ,N. ~7!

Given F and thef i ’s, this projection, which can be achieve
by elementary trainings of the output layer of synap
weights, will be understood in the following. It makes th
wj ’s functions of thel i ’s.

E. Training elementary tasks

Now we are concerned with the choice of the parame
l i of the FN’s performing elementary tasks. This is of som
importance, for the numberN of FN’s in the intermediate
layer is quite limited in practice. The subspace spanned
the f i ’s is thus, most undercomplete. Hence, every time o
requests an approximator to a newF, an optimization with
respect to the intermediate layer is in order, to patch lik
weaknesses of the ‘‘projector’’ solution,~6!.

Let us again minimize the square normE5^(F
2Fapp)u(F2Fapp)& of the error. We know from Eqs.~6!
that thewi ’s are functions of thel j ’s, but there is no need to
use chain rules]wi /]l j ]/]wi , because the same equ
tions, ~6!, cancel the corresponding contributions, thewi ’s
being optimal. Derivatives of thef i ’s with respect to their
scalesl i are enough. The gradient ofE, to be cancelled,
reads,

]E
]l j

5
2wj

l j
2 ^ X f8~X/l j !u~F2Fapp!&50, j 51, . . . ,N.

~8!

Here f 8 is the straight derivative of the reference element
task, before any scaling. There is no difficulty in impleme
ing a training algorithm for a gradient descent in thel space.

The next section, Sec. III, gives a brief sample of t
results, we obtained when solving Eqs.~6! and~8! for many
choices of the global taskF and elementary taskf.
9-3
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B. G. GIRAUD AND A. TOUZEAU PHYSICAL REVIEW E65 016109
III. NUMERICAL ILLUSTRATIVE EXAMPLES

A. Symmetry and degeneracy

Define for instance the scalar product in the functio
space as,̂f i u f j&[*0

20dX fi(X) f j (X), ; f i , f j . Among many
numerical tests, we show here the results obtained when
target task reads,F(X)50.10167e2X/10$0.60 717 tanh@4(X
21.66 133)#24.33 575 tanh@4(X29.565 91)#%. Let the el-
ementary task of a FN readf (X/l)5(12X2/l2) e2X2/(2l2),
a sombrero. SetN55, and initial values 1/4, 1/2, 1, 2, and
for the l i ’s. Keeping Eqs.~6! satisfied at each step, start
gradient descent from such initial values. Our increments
the l i ’s at each step read,dl i522]E/]l i , see Eqs.~8!.
After .90 steps, a saturation ofuuFappuu25^FuPuF& begins,
see Fig. 3.

A comparison betweenF andFapp is provided by Fig. 4.
This saturation makes it reasonable to interrupt the lea

ing. For the sake of rigor, however, another run, with 10
steps, was used to verify the saturation. While saturatio
confirmed, the convergence of thel i ’s is slightly slow. The
values of thel i ’s and wi ’s at the end of this second ru
read $0.249,0.535,1.0512,1.0522,11.13% and $20.0008,
20.0002,38.107,238.121,0.3764%, respectively. The weak
ness ofw1 andw2 is explained by the lack of a fine structu
in F. The large, almost opposite values ofw3 andw4 clearly
mean a renormalization of (f 32 f 4), sincel3 andl4 are so

FIG. 3. Learning curve: the normuuFuu of Fapp increases as a
function of the numbern of learning steps, then saturates.

FIG. 4. A target task~solid line! and its best approximation
~dashed! after learning saturation.
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close to each other. Numerical care because of differe
effects may therefore be necessary for practical applicatio
We show in Fig. 5 how thel i ’s evolved during the first 100
steps of the gradient descent.

A temporary merging ofl1 with l2, then a final episode
in which they become distinct again, are striking, as well
the merging ofl3 with l4. It will be stressed at this stag
that the whole process is invariant under any permutation
the l i ’s ~and of their associatedwi ’s!, hence a ‘‘triangular’’
rule, l i<l i 11 can be implemented without restricting lear
ing flexibility. Furthermore, as a symmetric function und
pairwise exchanges of such parameters, the error sq
norm E has a vanishing ‘‘transverse’’ derivative,]E/](l i
2l j )50, every timel i5l j . It is thus not surprising that, a
least for part of the learning process, the learning path ri
lines where such parameters merge.

When merging occurs, the functional basis seems to
generate sincef i and f j are not distinct. It will be recalled
however, that our output neuron is linear, and nothing p
vents the process from using the strictly equivalent repres
tations, wi f i1wj f j[(wi1wj )/23( f i1 f j )1(wi2wj )/2( f i
2 f j ). A trivial renormalization of the (f i2 f j ) term makes it
that the functional basis still contains two independent v
tors, namely, a new elementary response] f /]l besidesf i
5 f j . Naturally, the renormalization has a numerical co
since bothwi and wj must diverge. In practice, a minut
modification of the ‘‘triangular rule,’’ which becomes, in ou
runs,l i 112l i>1023, is enough to smooth our calculation
The conclusion of this merging phenomenon, for thoseF ’s
where it occurs, is of some interest: new specialized neuro
units ~new FN’s! may spontaneously emerge. These we c
‘‘derivative task units,’’ because they represent a new
ementary task]F/]l, or, if (p11) parameters merge, an
further derivative]pf /]lp.

B. Full Symmetry Breaking

Most choices ofF yield distinct values for thel i ’s. We
show in Fig. 6 a trivial case. Heref 51/@11(X2/l2)#, a

FIG. 5. Evolution ofL2[ log2 li , i51, . . . 5, asfunctions of the
learning stepn. Case where pairs of formal neurons create subu
that perform those tasks that are derivatives of the elementary
with respect to the parameter under training. Notice furthermore
that special example, the fusions oftwo pairs of scales, then the
splitting of one of them.
9-4
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ELEMENTARY DERIVATIVE TASKS AND NEURAL NET . . . PHYSICAL REVIEW E 65 016109
windowlike elementary response, and the target task re
F59/(1116X2)15/(114X2)12/(11X2)21/@11(X2/4)#
21/@11(X2/16)#, a sum of such windows. We freezel3
51,l452, andl554, a symmetry breaking situation, an
clearly a part of the obvious solution for the minimum ofE.
Then the contour map ofE in the $l1 ,l2%-space does show
the expected minimum forl151/4 andl251/2. The mini-
mum turns out to be very flat, hence some robustnes
likely for that special case. The learning process does re
this ‘‘fully symmetry breaking’’ configuration, together with
the corresponding set ofwi ’s, namely,$9,5,2,21,21%. Many
other, less academic cases generate a full symmetry br
ing, namely, distinctl i ’s.

C. More numerical results

Besides ‘‘windows’’ and ‘‘sombreros,’’ we also used o
cillatory shapes such as (sinX)/X for f. A cutoff by an expo-
nential decay was also sometimes introduced. The rang
the scalar product integration was independently var
within one order of magnitude. Sometimes the dimensionN
of the elementary task basis was also taken as a ran
number, a test of little interest, however, which just verifi
that Fapp improves whenN increases. ForF, a few among
our tests involved a small amount of random noise adde
a smooth main partFbackground. Furthermore, we investi
gated a fair amount of piecewise continuousF ’s, this case
being of interest for image processing@8#. Alternately, we
smoothed such discontinuities with a suitable definition ofF,
such as,F5( l cl tanh@s(X2bl )#, with randomized choices
of the number of terms, the coefficientscl , the large ‘‘slope
coefficients ’ ’ , and the positionsb l of the steep areas. Th
set of initial values for thel i ’s before gradient descent wa

FIG. 6. Symmetry breaking case. Contours of the error in
vicinity of a symmetry breaking set of parameters. The last th
out of five adjustable parameters are frozen and distinct. The m
mum of the error is reached with unequal values of the first t
parameters.
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also sometimes taken at random. It was often found tha
traditional sequencel i.2i 2(N11)/2 is not a bad choice for a
start.

All our runs converge reasonably smoothly to a saturat
of the normuuFappuu, provided those cases whereG becomes
ill conditioned are numerically processed. There is a sign
cant proportion of runs where the optimum seems to be q
flat, hence some robustness of the results. Local min
where the learning gets trapped do not seem to occur v
often, but this problem deserves the usual caution, with
usual annealing if necessary. We did not find clear criteria
predicting whether a givenF leads to a merging of som
l i ’s, however. Despite this failure, all these results advoc
a reasonably positive case for the learning process descr
by Eqs. ~6! and ~8! and the emergence of derivative ta
subunits, performing tasks that are derivatives off with re-
spect to its parameters.

IV. GENERALIZATIONS

Most among the considerations of this paper clearly h
if one replaces wavelets by other responses and scaling
rameters by other continuous parameters.

The most important and well-known issue is that of t
universality offered by nets whose architecture is descri
by Figs. 1 and 2, namely, four layers:~i! input weightsu, ~ii !
FN’s for elementary tasksf with adjustable parametersM ,
~iii ! output weightsw, and~iv! linear output neuron~s!. The
linearity of the final layer can be summarized in any dime
sions by the linear transformF(X)5*dM w (M )f(X;M ).
~We use here boldface symbols to stress that the linea
generalizes to any suitable vector and tensor situations
multiparameter inputs, intermediate tasks, and outputs.! This
linearity reduces the theory of such an architecture to a s
cial case of the ‘‘generator coordinate’’ theory, well known
physics @9#. From a mathematical point of view, this als
boils down to the question of the invertibility of the kern
f(X;M ). Actually, the invertibility problem consists in iden
tifying those classes of global tasksF, which belong to the
functional~sub!space spanned by thef’s. The experience ob-
tained in many domains of physics with the generator co
dinate approach provides a qualitative general rule: one m
be very clumsy with the choice of elementary tasks, or v
unlucky with a very singular global task, to miss enou
universality and fail a reasonable reconstruction of that g
bal task.

Another, and harder problem, however, is to find a gene
theory for a minimal cost of the reconstruction. Although th
paper was essentially confined to scalar tasks of scalar a
ments, we briefly sketch an approach, taken from a spe
case of the generator coordinate theory: the angular mom
tum projections that are so familiar in the theory of molec
lar and nuclear rotational spectra@10#. The parametersM can
be defined as including the input synaptic weight vectorsuW ,
whose dimension is necessarily the same as that of the in
XW in order to generate the actual inputsuW •XW received by the
intermediate FN’s. WhenM also explicitly includes scale
parametersl, there is no loss of generality in restricting th

e
e
i-

o
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B. G. GIRAUD AND A. TOUZEAU PHYSICAL REVIEW E65 016109
uW ’s to be unitary vectors. Hence the linear kernelf can imply,
in a natural way, an integration upon the group of rotatio
transforming all theuW ’s into one another. This is of interest
the global taskF turns out to belong to a finite representati
of a rotation group and if elementary tasks, related to rep
sentations of the same group, can be implemented in a c
way. An optimization of the expansion ofF is then obviously
available.

In any case, because of the permutation symmetry of
problem with respect to the intermediate tasksf, any gradient
descent in any space of continuous parameters of thef’s may
ride a line where two~or more! of such parameters becom
equal. The occurrence of tasks that are derivatives of
initial elementary tasks can thus be expected to be nonex
tional.

V. DISCUSSION AND CONCLUSION

In this paper we proved a universality theorem for neu
nets in the special case of neurons whose response ca
dergo ‘‘scaling without translating,’’ a case inspired by wav
lets. The elementary response under scaling, incident
does not need to be just a wavelet. We showed how wind
like responses can make suitable building blocks of the n

This paper also takes advantage of the well-known is
of the discretization of a continuous expansion, which c
verts kernels into finite matrices, naturally. The paper stud
what happens if one trains output weights for a tempor
optimum of the approximate taskFapp , while the intermedi-
ate elementary tasks are not yet optimized. This implie
prejudice on training speeds: weights fast learners and
rameters of elementary tasks slower. Other choices, suc
weights slower learners and parameters faster, for insta
are as legitimate, and should be investigated too. The q
tion is of importance for biological systems, because of
vious likely differences in the time behaviors and biochem
cal and metabolic factors of synapses and cell bodies.
training speed hierarchy, we chose pointed to one techn
problem only, namely whether the Gram-Schmidt matrixG
of scalar productŝf i u f j& was easily invertible or not. We did
s
.
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not use a Gram-Schmidt orthogonalization of the finite ba
of such f i ’s, but the~pseudo! inversion ofG amounts to the
same. OnceG 21 is obtained, temporarily optimal weight
are easily derived.

Our further optimization ofFapp with respect to the pa-
rameters of the intermediate FN’s takes advantage of the
earity of the output~s! and the symmetry of the problem un
der any permutation of the FN’s. Leti label such FN’s,i
51, . . . ,N and denotel i the scaling parameter of thei th
FN. We found cases where the gradient descent used to
timize Fapp induces a fewl i ’s to become large, quite clos
to one another, with opposite signs. Such functional clust
because of the output linearity, may yield almost element
tasks corresponding to derivatives off with respect tol. This
derivative process may look similar to a Gram-Schmidt
thogonalization, but it is actually distinct, because no rank
lost in the basis. For thoseF ’s that induce such mergings o
FN’s, industrial applications should benefit from a prelim
nary simulation of training as a useful precaution. Inde
besides straight FN’s implementingf, additional, more spe-
cific FN’s implementingd f /dl will be necessary. For bio-
logical systems, diversifications of neurons, or groups
such, between tasks and such derivative tasks might als
concepts of interest.

In some cases, it may be noticed that the word ‘‘deriv
tive’’ may hold with respect to inputs as well as paramete
Indeed, as found at the stage of Eq.~3!, scale parameters
reduce, in a suitable representation, to translational par
eters in a taskg(Y2L). The sign difference between]g/]Y
and]g/]L is obviously inconsequential.

This emergence of derivative elementary tasks prompt
into a problem yet unsolved by our numerical studies w
many differentF ’s and many differentf ’s: given the shape of
f, it would be useful to predict whether a givenF leads to a
full symmetry breaking or to a partial merging of the FN’
This question is under study.
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