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Elementary derivative tasks and neural net multiscale analysis of tasks
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Formal neurons implementing wavelets have been shown to build nets that are able to approximate any
multidimensional task. In this paper, we use a finite number of formal neurons implementing elementary tasks
such as “sombrero” responses or even simpler “window” responses, with adjustable widths. We show this to
provide a reasonably efficient, practical and robust, multifrequency analysis of tasks. The translation degree of
freedom of wavelets is shown to be unnecessary. A training algorithm, optimizing the output task with respect
to the widths of the responses, reveals two distinct training modes. The first mode keeps the formal neurons
distinct. The other mode induces some of the formal neurons to become identical, with output weights of equal
strengths but opposite signs. Hence this latter mode promotes tasks that are derivatives of the elementary tasks
with respect to the width parameter. Such results, obtained from optimizations with respect to a width param-
eter, can be generalized for any other parameters of the elementary tasks.
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[. INTRODUCTION connecting a layer of intermediate, “elementary task neu-
rons” to an output, purelyinear neuron. The second training
The ability of neural nets to be universal approximatorsconsists of optimizing the scale parameters of such a layer of
has been proved by Refd.,2] and studied by further authors intermediate neurons. It will be found that one may start
in different contexts. For instance, neurons or small neurondfom random values of such parameters and, however, some-
groups implementing “plane wave responses” have beeriimes reach solutions where some among the intermediate
considered by Ref§3] and Ref.[4]. Also, pairs of neurons heurons are driven to become identical. This “dynamical
implementing “window responses” have been investigatedidentification” training will be discussed.
by Refs.[5]. Any complete enough basis of functions, thatis  For the generic case of multidimensional inputs, we sepa-
able to span a sufficiently large vector space of responskate a “radial” from an “angular” analysis of the task. This
functions, is of interest. For instance, the wavelet analysiéechnical manipulation does not change our results.
has been the Subject of a Comp|ete investigation by FE@IS In Sec. I, we describe our formalism, including a tradi-
and[7]. tional universality theorem. We also reduce the realistic,
In this paper, we visit again the subject of a linear expanmultidimensional situations to a one-dimensional problem.
sion of tasks in wavelets, but with an emphasis upon neglecth Sec. Ill we illustrate such considerations by numerical
ing the usual “translational” parameters. We mainly use aé€xamples of network training. Section IV contains a few con-
scale parameter only. This is somewhat different from thesiderations for the generalization of the results obtained with
usual wavelet approach, which takes advantage of both tranf1e wavelet model and similar models. Finally Sec. V con-
lation and scale. But we shall find that a multifrequency re-tains our discussion and conclusion.
construction of tasks occurs as well.
For the sake of robustness and biological relevance, we
introduce a significant amount of randomness, corrected by Il. FORMALISM
training, in the initial choice of the implemented neuronal
parameters. Furthermore, our basic neuronal units are not
necessarily strictly related to wavelets. They can be those Consider an inpuX>0 that must be processed into an
“window response” pairs advocated earligs], because of output(a task F(X). This input is taken here to be a positive
biological relevance too. Such deviations from the more rignumber, such as the intensity of a spike or the average inten-
orous approaches of Ref&] and[7] are expected to make sity (or frequency of a spike train. One may vie as a
cheaper the practical implementation of such neural netsradial” coordinate in a suitable space. There is no loss of
They turn out to give similar results, namely, the multifre- generality in restricting< to be a positive number, because,
guency analysis works as well with windowlike, sombrero-should negative values of be necessary for the argument,
like or any more general elementary response. then F could always be split into even and odd parts,
We investigate two training operations. The first one con{F(X)*=F(—X)]/2, respectively. Such even and odd parts
sists of an easy optimization of the output synaptic layemeed only be known foX>0, obviously. Outputs, in turn,
will have both signs, in order to account for both excitation
or inhibition. Finally there is no need to tell a scalar task
*Email address: giraud@spht.saclay.cea.fr F(X) from a vector task{F(X),F,(X), ...}, since any

A. Definitions, architecture
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F(X)

Linear output neuron

FIG. 1. All elementary unit§FN’s) receive
the same inpui. Each unit returns an outpdit
which depends on parameters such as a threshold
I&%}’ﬁéﬁf b and a scale.. Output synaptic weighta/(b,\)
responses linearly mix such elementary outputs,, (X)

=f(X;b,\) into a global outpuf(X).

X

componentF,(X) boils down to a separate scalar task, andwhere W(L)=w(e") and g(Y)=f(e"). This reduces the
this can be processed by a parallel architecture. “scale expansion,” Eq(2), into a “translational expansion”
Consider now neuronal units which, for instance, may bewvhere a basis is generated by arbitrary translations of a given

excitatory-inhibitory pairs of neurons providing a window- function. The solution of this inverse convolution problem is
like elementary response. Or they may be more complicategtivially known asW(p)=G(p)/g(p), where the superscript
assemblies of neurons, providing a more elaborate “mother refers to the Fourier transforms ¥, G, andg, respec-
wavelet,” sugh as a “sombrgro.” We denof(X) thg re- tively, andp is the relevant “momentum.” This result will
sponse function of such a unit and, for short, call this unit 9make our claim for universality. In the following, this paper

“formal neuron” (FN). The traditional wavelet approach o iicaiv assumes that the needed analvtical proberties of
uses a set of such FN’'s with various threshdddand scale piricaly assu . S ytical p .p r-| S
é,f, ... W are satisfied. Actually, for the sake of biological

sensitivities X, hence a space of elementary responseor industrial relevance, we are only concerned with discreti-
fon(X)=f[(X—Db)/\]. The same approach expari this zations of Eq/(2), with N units,

set,
N

F(X)zf db d\ w(b,\) f[(X=b)/\)], (1) Fapp(x):igl W) FXING), (4)

. . . _l .
where the integral is most often reduced to a discrete sunfVhere we now lew include the coefficienk; “d. Also, in
Also, b and\ do not need to be independent parameters. Th@n obvious short notation, we will use=w(A;).
expansion coefficientsy(b,\), are output synaptic weights

and are the unknowns of the problem. This well-known ar- C. Rotational analysis
chitecture is shown in Fig. 1. Obviously, input patterns to be processed by a net cannot
be reduced to one degree of freedotronly. Rather, they
B. One-dimensional universality, radial case consist of a vector X with many components
The following, seemingly poorer, but simpler expansion, X1.X2, - .. Xp. These may be considered as, and recoded
into, a radial variableX=\’=[_, X and, to specify a direc-
FOO= | dAwOON"2E(X/\ 2 tion on the suitable hyper§phere, P.{— 1) angles
(X) fo ) ( ) @ aq,ay, ..., ap_1. Enough special functiongLegendre

polynomials, spherical harmonics, and rotation matrices,
does not use the translation paraméteHere it is assumed ©tc) are available to generate complete functional bases in
that there exists a suitable electronic or biological tuninggngular space and one might invoke some formal neurons as

mechanism, able to recruit or adjust FN's with suitable gaindmplementing such base angular functions. The design of
A1, but no threshold tuning. Such gains are positive numSuch FN's, and as well the design of such a polar coordinate

bers, naturally. The outputs of such FN's are then added, viEecoding, is a little far fetched, though. In this paper, we
synaptic output efficienciew(\), which can be both posi- Prefer to take advantage of the following argument, based
tive and negative, namely excitatory and inhibitory, respecHPOn the synaptic weights of the input layer, shown in Fig. 2.
tively. The coefficienth * is introduced in Eq(2) for con- In the left part of the figure, Fig. 2, all the FN’s have the

venience only. It can be absorbedvir{)). same input synaptic weights={u,,u,, ... up}, hence re-
This expansion, Eq(2) allows a universality theorem. ceive the same inpiX=u-X when contributing to a global
DefineY=InX andL=In\. The same expansion becomes, taskF. For the right part of Fig. 2, it is again assumed that all
FN’'s have equal input weights, with, however, Weigﬁfs
G(Y)=F(e")= fw dL W(L)g(Y—L), (3y  deduced fromu by a sheer rotationj’ = Ru. Accordingly, if
—o the output weights of the left part are the same as those of the
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FIG. 2. Architecture showing how a task can
be rotated by means of the input synaptic
weights.

right one, the global task(u’-X) performed by the right =Ei’f‘j=1|fi>(g*1)ij<fj| is the projector upon the subspace
part is a rotated task;’ =RF. An expansion of any task  spanned by thd;'s. Then an easy solutiork ,,,=PF, is

upon the P—1) rotation group is thus available, found for Egs.(6),
N
J-'=J’ dRW(R) RF, (5 Wi:j; (G H(filF),  i=1,...N. )

where discretizations are in order, naturally, with suitableGivenF and thef;’s, this projection, which can be achieved
output weights\V. Here F plays the role of an elementary Dy elementary trainings of the output layer of synaptic
task, and it m|ght be of some interest to Study cases Where Weights, will be understood in the fO”OWing. It makes the
belongs to specific representations of the rotation group. Thi#/;'s functions of the\;’s.

broad subject exceeds the scope of the present paper, how-

ever, and, in the following, except in Sec. IV, we mainly E. Training elementary tasks

restrict our considerations to scalar taskéxX) of a scalar

: . . Now we are concerned with the choice of the parameters
input X according to Fig. 1 only.

\; of the FN'’s performing elementary tasks. This is of some
importance, for the numbéax of FN's in the intermediate
D. Training output weights layer is quite limited in practice. The subspace spanned by
. . ) the f;’s is thus, most undercomplete. Hence, every time one
Let us return to Eq(4), in an obvious, short notation equests an approximator to a néyan optimization with

Fapp=2iWifi. Two kinds of parameters can be used t0 bestggpect to the intermediate layer is in order, to patch likely
reconstructF: the output synaptic weighte; and, hidden \yeaknesses of the “projector” solutiof6).

inside the elementary tasks, the scales,;. Let(|) denote Let us again minimize the square norf=((F

a suitable sca}Iar product in the functional space spanned by Fapp)|(F_ Fapp) Of the error. We know from Eqy(6)

all the f;’s of interest. We assume, naturally, that the sam&pat thew;’s are functions of thev;’s, but there is no need to
scalar product ma_kes_ sense for F_Ffe. Inmdentally,_there IS use chain rulesiw;/ox. aléw;, because the same equa-
no loss of generality i is normalized(F|F)=1, since the  {jong (6), cancel the cjorresponding contributions, thgs
final neuron is linear. being optimal. Derivatives of thé’s with respect to their

One way to define the “bestF,, is to minimize the  gcaies) . are enough. The gradient @ to be cancelled,
square norm of the erroF(—F ). In terms of thew;’s, this o545

consists in solving the equations,

- )I(F— =0, j=1,...N.
aw, <F|F>—2j§:1 Wj<fj|F>+jé1Wj<fj|fk>Wk =0, NN j app .

Heref’ is the straight derivative of the reference elementary
task, before any scaling. There is no difficulty in implement-
Let G be that matrix with elementsjk=<f,-|fk>. Its inverse ing a training algorithm for a gradient descent in thepace.
G~ usually exists. Even in those rare cases wids very The next section, Sec. lll, gives a brief sample of the
ill conditioned, or its rank is lower thaN, it is easy to define results, we obtained when solving E¢6) and(8) for many
a pseudoinverse such that, in all cases, the operBtor choices of the global task and elementary task

i=1,...N. (6)
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FIG. 3. Learning curve: the noriF|| of F,, increases as a

function of the numben of learning steps, then saturates. FIG. 5. Evolution ofl,=log; );,i=1,...5, asunctions of the

learning stem. Case where pairs of formal neurons create subunits
that perform those tasks that are derivatives of the elementary task
. NUMERICAL ILLUSTRATIVE EXAMPLES with respect to the parameter under training. Notice furthermore, in
that special example, the fusions wfo pairs of scales, then the

A. Symmetry and degeneracy splitting of one of them

Define for instance the scalar product in the functional
space asAfi|fl.>Engdx fi(X) f;(X), ¥ f;,f;. Among many close to each other. Numerical care because of difference
numerical tests, we show here the results obtained when tifects may therefore be necessary for practical applications.
target task readsfF(X)=0.10167e X1%0.60 717 tanpi(x ~ We show in Fig. 5 how tha's evolved during the first 100
—1.66 133) —4.33575 tanf#(X—9.56591)}. Let the el- Steps of the gradient descent. . .
ementary task of a FN reddX/\) = (1—X?/\2) e X2(@\Y) A temporary merging oh; with \,, then a final episode
a sombrero. Sal=5_ and initial values 1/4. 1/2. 1. 2 an’d 4 in which they become distinct again, are striking, as well as
for the \;’s. Keeping Eqs(6) satisfied at each step, start a tEetrR]erglrk]]glof)w with 7‘.4'.“ W'." bte st(;essed at this tSt?ge f
gradient descent from such initial values. Our increments o% a ,e WRNOIE process 1S |r_1var|af1 under any“p(_ermu a |(3n 0
the \,'s at each step readi\, = —24&/d\,, see Eqs(8). the \;’s (and of their associated;’s), hence a “triangular

After =90 steps, a saturation ﬁFapp||2:<F|7’|F> begins, _rule, )\S)}!H can be implemented Wlthout_ restrlct!ng learn-
see Fig. 3 ing flexibility. Furthermore, as a symmetric function under

A comparison betweeR andF,, is provided by Fig. 4. pairwise exchanges of such parameters, the error square

This saturation makes it reasonable to interrupt the |eamr_l0{m_60has a ‘f‘”;h[‘g t:ta_nst\:]erse tdenvayy@ﬁ/tfw();i t
ing. For the sake of rigor, however, another run, with 1000 )= 0, every time\; =1, . Itis thus not surprising that, a
steps, was used to verify the saturation. While saturation i%east for part of the learning process, the learning path rides

confirmed, the convergence of the¢'s is slightly slow. The Ines where suph parameters merge. .

values of the\;'s and w;’s at the end of this second run When merging occurs, the fu_nc_tlonal ba_3|s seems to de-
read (0,249 Ol535 h 05|12 1.0522,11}13and {—0.0008 generate sincé; andf; are not distinct. It will be recalled,
0 0002’ 38 107_ 32’3 '121 0’3.76}4 réspectively Thé weai<- however, that our output neuron is linear, and nothing pre-
nes.s ofwl' an.dwzy is éxpla’in.ed by the lack of a.fine structure vents the process from using the strictly equivalent represen-
in F. The large, almost opposite valuesvaf andw, clearly tations, Wi fw; f;=(w;+w;)[2 (f; 41;) + (w; —w;) /2(F;

o . —f:). Atrivial renormalization of thef;—f.) term makes it
_ j i i
mean a renormalization off¢—f,), sinceks andh, are so i finctional basis still contains two independent vec-

tors, namely, a new elementary respo@$éd\ besidesf;
=f;. Naturally, the renormalization has a numerical cost,
since bothw; and w; must diverge. In practice, a minute
modification of the “triangular rule,” which becomes, in our
runs,\i.1—\;=10"3, is enough to smooth our calculations.
The conclusion of this merging phenomenon, for these
where it occurs, is of some interest: new specialized neuronal
units (new FN'9 may spontaneously emerge. These we call
“derivative task units,” because they represent a new el-

X ementary taskF/d\, or, if (p+1) parameters merge, any
further derivativesPf/I\P.

15 20

~

- B. Full Symmetry Breaking

FIG. 4. A target task(solid line) and its best approximation Most choices ofF yield distinct values for the\;'s. We
(dashed after learning saturation. show in Fig. 6 a trivial case. Heré=1/[1+(X?/\?)], a
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11 also sometimes taken at random. It was often found that a
traditional sequenck;=2'~(N*1/2js not a bad choice for a
0.575} start.
All our runs converge reasonably smoothly to a saturation
055 of the norm||F ||, provided those cases whegebecomes
ill conditioned are numerically processed. There is a signifi-
cant proportion of runs where the optimum seems to be quite
0.5251 flat, hence some robustness of the results. Local minima
where the learning gets trapped do not seem to occur very
0.5} 1z often, but this problem deserves the usual caution, with the
usual annealing if necessary. We did not find clear criteria for
0.475] predicting whether a givelr leads to a merging of some
\i's, however. Despite this failure, all these results advocate
o 45 a reasonably positive case for the learning process described
by Egs.(6) and (8) and the emergence of derivative task
subunits, performing tasks that are derivatived wfith re-
0.4257 spect to its parameters.
0.24 0.245 0.25 0.255 0.26 IV. GENERALIZATIONS

_ FIG. 6. Symmetry breaking case. Contours of the error in the 155t among the considerations of this paper clearly hold
vicinity of a symmetry breaking set of parameters. The last threqf one replaces wavelets by other responses and scaling pa-
out of five adjustable parameters are frozen and distinct. The minifameters by other continuous parameters.

The most important and well-known issue is that of the
universality offered by nets whose architecture is described

. ) by Figs. 1 and 2, namely, four layer$) input weightsu, (i)
windowlike elzementary regponse, ang the target ;ask readsn’s for elementary taské with adjustable parameteid,
F=9/(1+ 126X )+5/(1+4X )+2/(1+_X ) — 111+ (X/4)] (iii ) output weightsw, and (iv) linear output neura(s). The
—111+(X?/16)], a sum of such windows. We free2e;  |inearity of the final layer can be summarized in any dimen-
=1,\,=2, and\z=4, a symmetry breaking S|_tu.at|on, and gjons by the linear transfornf(X)=fdMw(M)f(X:M).
clearly a part of the obvious solution for the minimum&f  \ve use here boldface symbols to stress that the linearity
Then the contour map & in the {\;,\,}-space does Show generalizes to any suitable vector and tensor situations for
the expected minimum fok,=1/4 andA,=1/2. The mini-  myitiparameter inputs, intermediate tasks, and outpitss
mum turns out to be very flat, hence some robustness ignearity reduces the theory of such an architecture to a spe-
likely for that special case. The learning process does reacfja| case of the “generator coordinate” theory, well known in
this “fully symmetry breaking” configuration, together with physics[9]. From a mathematical point of view, this also
the corresponding set of;'s, namely,{9,5,2-1,—1}. Many  pojls down to the question of the invertibility of the kernel
other, less academic cases generate a full symmetry breagx:M). Actually, the invertibility problem consists in iden-

mum of the error is reached with unequal values of the first two
parameters.

ing, namely, distinch;’s. tifying those classes of global tasks which belong to the
functional(subspace spanned by tliis. The experience ob-
C. More numerical results tained in many domains of physics with the generator coor-

Besides “windows” and “sombreros.” we also used os- dinate approach provides a qualitative general rule: one must
cillatory shapes such as (SiVX for f. A cutoff by an expo- be very clumsy with the choice of elementary tasks, or very
nential decay was also sometimes introduced. The range &fNlUcky with a very singular global task, to miss enough
the scalar product integration was independently varie¢thiversality and fail a reasonable reconstruction of that glo-
within one order of magnitude. Sometimes the dimengion Pal task. S
of the elementary task basis was also taken as a random Another, and harder problem, however, is to find a general
number, a test of little interest, however, which just verifiegtheory for a mlnlm_al cost of_the reconstruction. Although this
that F ,,,, improves wherN increases. FoF, a few among Paper was essentially confined to scalar tasks of scalar argu-

app . ’

our tests involved a small amount of random noise added t§'€Nts, we briefly sketch an approach, taken from a special
a smooth main parEyacgroune FUTthermore, we investi- case of the generator coordinate theory: the angular momen-

gated a fair amount of piecewise continudeis, this case tum projections that_are so familiar in the theory of molecu-
being of interest for image processifig]. Alternately, we ar @nd nuclear rotational spec{E0]. The parameterist can
smoothed such discontinuities with a suitable definitiofrof be defined as including the input synaptic weight vectars
such asF=3 ,c, tanh[o(X—3,)], with randomized choices Whose dimension is necessarily the same as that of the inputs
of the number of terms, the coefficierts, the large “slope X in order to generate the actual inputsX received by the
coefficiento’’, and the positiong3, of the steep areas. The intermediate FN's. WheM also explicitly includes scale
set of initial values for the\;’s before gradient descent was parameters., there is no loss of generality in restricting the
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's to be unitary vectors. Hence the linear kerhean imply, not use a Gram-Schmidt ort'hogon.alization of the finite basis
of suchf;’s, but the(pseudg inversion ofG amounts to the

in a natural way, an integration upon the group of rotatlonssame. Onceg - is obtained, temporarily optimal weights

transforming all thal's into one another. This is of interest if are easily derived.
the global task turns out to belong to a finite representation ¢ further optimization of ,,, with respect to the pa-
of a rotation group and if elementary tasks, related to reprerameters of the intermediate FN's takes advantage of the lin-
sentations of the same group, can be implemented in a Che@&rity of the output) and the symmetry of the problem un-
way. An optimization of the expansion Bfis then obviously  ygr any permutation of the FN’s. Létlabel such FN'sj
available. , =1,... N and denote\; the scaling parameter of thi¢h
In any case, because of the permutation symmetry of then \we found cases where the gradient descent used to op-
problem ywth respect to the |ntermed|ate taBkany gradient  {imize F.pp induces a few;’s to become large, quite close
descent in any space of continuous parameters dfshreay 5 one another, with opposite signs. Such functional clusters,
fide a line where twdor morg of such parameters become pecayse of the output linearity, may yield almost elementary
equal. The occurrence of tasks that are derivatives of thgysks corresponding to derivativesfafith respect tov. This
mmal elementary tasks can thus be expected to be nonexceggrivative process may look similar to a Gram-Schmidt or-
tional. thogonalization, but it is actually distinct, because no rank is
lost in the basis. For thode’s that induce such mergings of
V. DISCUSSION AND CONCLUSION FN'’s, industrial applications should benefit from a prelimi-
qnary simulation of training as a useful precaution. Indeed,

in th ial f h e_.sides st'raight FN'§ implemen'tirigadditional, more spe-
nets in the special case of neurons whose response can L@}ﬂc FN's implementingd f/d\ will be necessary. For bio-

dergo “scaling without translating,” a case inspired by wave- =" . e
9 9 9 b y logical systems, diversifications of neurons, or groups of

lets. The elementary response under scaling, incidentally, L ;
does not need to be just a wavelet. We showed how windovxﬁ'“Ch’ between tasks and such derivative tasks might also be
) oncepts of interest.

like responses can make suitable building blocks of the net$ | i b ticed that th d “deri
This paper also takes advantage of the well-known issu n Some cases, it may be noticed that the word “deriva-
five” may hold with respect to inputs as well as parameters.

of the discretization of a continuous expansion, which con
b (hndeed, as found at the stage of H), scale parameters

verts kernels into finite matrices, naturally. The paper studie d . itabl tation. o t lational
what happens if one trains output weights for a temporar);e uce, in a suitable representation, 1o transiational param-

optimum of the approximate task,,,, while the intermedi- eters in a taslg(Y —L). The sign difference betweeig/dY

ate elementary tasks are not yet optimized. This implies gnd ag/&L Is obviously mc_:on;equenual.
prejudice on training speeds: weights fast learners and pa- This emergence of derivative elementary tasks prompts us

rameters of elementary tasks slower. Other choices, such Jyo a problem ,yet unsolved _by our,n.umerlcal studies with
weights slower learners and parameters faster, for instanc 1any different’s and many _d|fferent S: given the shape of
are as legitimate, and should be investigated too. The ques-'t Would be useful to predict whether a givénleads to a
tion is of importance for biological systems, because of ob-u". symmetry preakmg or o a partial merging of the FN's.
vious likely differences in the time behaviors and biochemi-ThIS question is under study.

cal and metabolic factors of synapses and cell bodies. The
training speed hierarchy, we chose pointed to one technical
problem only, namely whether the Gram-Schmidt magix A.T. thanks Service de Physique Thgue, Saclay, for its
of scalar productsf;|f;) was easily invertible or not. We did hospitality during this work.

In this paper we proved a universality theorem for neur
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